Consider a polynomial of order n

$$
p_{0} r^{n}+p_{1} r^{n-1}+\cdots+p_{n-1} r+p_{n}=0
$$

where p_{i} are real constants.
Facts:

1. If n is odd there is at least one real root (may be hard to find!).
2. Start at the lefthand side of the equation and count the number of sign changes between coefficients. Suppose this number is m. Then there are m or $m-2$ or $m-4$ or \cdots positive roots.
3. Replace x by $(-x)$ and count the number of sign changes again. Let this number be s. Then there are s or $s-2$ or $s-4$ or \cdots negative roots.
4. Determine the factors of p_{0} and p_{n}. If there are rational roots then they must be in the form of $\pm \frac{q_{n}}{q_{0}}$ where q_{n} is a factor of p_{n} and q_{0} is a factor of q_{n}.

Example A. $x^{5}+3 x^{3}+x+1=0$

1. At least one root.
2. No sign changes \Rightarrow no positive roots.
3. $(-x)^{5}+3(-x)^{3}+(-x)+1=-x^{5}-3 x^{3}-x+1=0$

One sign change \Rightarrow one root and it's negative.
4. Root is not rational. Since $q_{0}=1, q_{n}=1$ and -1 is not a root.

Example B. $x^{6}+4 x^{4}+x^{2}+1=0$

1. No sign changes \Rightarrow no positive roots.
2. $(-x)^{6}+4(-x)^{4}+(-x)^{2}+1=x^{6}+4 x^{4}+x^{2}+1=0$

No sign change \Rightarrow no negative roots.
3. No real roots.

Example C. $x^{3}-2 x^{2}-x+2=0$

1. At least one root.
2. 2 sign changes $\Rightarrow 2$ or 0 positive roots.
3. $\left(-x^{3}\right)-2(-x)^{2}-(-x)+2=-x^{3}-2 x^{3}+x+2=0$

1 sign change \Rightarrow one negative root.

$$
q_{n}=1,2 \quad q_{0}=1
$$

If there are rational roots then they must be of the form $\pm \frac{2}{1}, \pm \frac{1}{1}$.

Try
$x=-2 \quad(-2)^{3}-2(-2)^{2}-(-2)+2=-8-8+2+2 \neq 0$
$x=2 \quad 2^{3}-2(2)^{3}-2+2=0 \Rightarrow x=2$ is a root. (Notice there must be a second positive root.)
$x=1 \quad 1^{3}-2(1)^{2}-1+2=0 \Rightarrow x=1$ is a root.
$x=-1 \quad(-1)^{3}-2(-1)^{2}-(-1)+2=0 \Rightarrow x=-1$ is a root.

Problems:

1. $2 x^{3}-5 x^{2}+7 x-2$
2. $x^{3}-12 x^{2}+48 x-64=0$
3. $x^{10}+x^{8}+1=0$

Finding all roots of a real number

Example D. Suppose you want to solve $r^{3}+8=0$. You want to find the 3 roots of -8 .

$$
\begin{aligned}
& -8=8[\cos (\pi+2 n \pi)+i \sin (\pi+2 n \pi)]=8 e^{i(\pi+2 n \pi)} \\
& \begin{aligned}
(-8)^{1 / 3} & =\left[8 e^{i(\pi+2 n \pi)}\right]^{1 / 3}=8^{1 / 3} e^{i}\left(\frac{\pi+2 n \pi}{3}\right) \\
& =2\left[\cos \frac{\pi+2 n \pi}{3}+i \sin \frac{\pi+2 n \pi}{3}\right]
\end{aligned} \\
& n=0 \quad 2\left[\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right]=2\left[\frac{1}{2}+i \frac{\sqrt{3}}{2}\right] \\
& n=1 \quad 2[\cos \pi+i \sin \pi]=2[-1+0 i] \\
& n=2 \quad 2\left[\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right]=2\left[\frac{1}{2}+i\left(-\frac{\sqrt{3}}{2}\right)\right]
\end{aligned}
$$

Example E. Suppose you want to solve $r^{4}-4=0$. You want to find the 4 roots of 4 .

$$
\begin{aligned}
& 4=4[\cos (2 n \pi)+i \sin (2 n \pi)]=4 e^{i 2 n \pi} \\
& \begin{array}{c}
(4)^{1 / 4}=\left[4 e^{i 2 n \pi}\right]^{1 / 4}=4^{1 / 4} e^{\frac{i 2 n \pi}{4}} \\
=\sqrt{2}\left[\cos \frac{n \pi}{2}+i \sin \frac{n \pi}{2}\right] \\
n=0 \quad \sqrt{2}[\quad 1+i 0] \\
n=1 \quad \sqrt{2}[\quad 0+i 1] \\
n=2 \quad \sqrt{2}[-1+i 0] \\
n=3 \quad \sqrt{2}[\quad 0+i(-1)]
\end{array}
\end{aligned}
$$

Problems:

4. $r^{4}+2=0$
5. $r^{6}-27=0$
6. $r^{8}+256=0$
