Separable Equations

This method is the most straightforward of all the methods. Basically, the ODE can be written as

$$y' = f(t)g(y).$$

As you can see the variables "separate" into the product of two different functions. From here you divide by g(y), multiply by dt, and integrate both sides.

Example A. $y' = t^2 \cos y$ y(1) = 0

- 1. Notice $\frac{dy}{dt} = t^2 \cos y$ so that $\frac{dy}{\cos y} = t^2 dt$.
- 2. Integrating $\int \sec y dy = \int t^2 dt$ so that $\ln|\sec y + \tan y| = \frac{t^3}{3} + c$
- 3. Plugging in IC: $\ln 1 = \frac{1^3}{3} + c$
- 4. Thus $\ln|\sec y + \tan y| = \frac{t^3}{3} \frac{1}{3}$.

Example B. $y' = y^2 \sin t + \sin t + y^2 e^t + e^t$ y(0) = 1

- 1. Rewrite the ODE as $\frac{dy}{dt} = (y^2 + 1)(\sin t + e^t)$.
- 2. Divide by $y^2 + 1$, multiply by dt to get $\frac{dy}{y^2 + 1} = (\sin t + e^t)dt$.
- 3. Integrating both sides we have $\int \frac{dy}{y^2 + 1} = \tan^{-1} y = \int (\sin t + e^t) dt = -\cos t + e^t + c.$
- 4. Plugging in IC: $\tan^{-1} 1 = -\cos 0 + e^0 + c$.
- 5. Thus $\tan^{-1} y = -\cos t + e^t + \frac{\pi}{4}$.

Hint I: As you can see, probably the hardest part of this problem is factoring the right-hand side!

Problems:

1.
$$y' = t^3 e^y + t e^y + e^y$$
 $y(1) = \ln 2$

2.
$$y' = ty + y \tan t + t + \tan t$$
 $y(1) = 0$

3.
$$y' = t^2 - t\cos y - 1 + t + \cos y - t^2\cos y$$
 $y(2) = \frac{\pi}{4}$

4.
$$t' = e^{t+y}$$
 $y(\ln 2) = \ln 3$

5.
$$y' = \frac{e^t + 1}{y^2 + 2}$$
 $y(0) = -3$

Solutions:

1.
$$-e^{-y} = \frac{t^4}{4} + \frac{t^2}{2} + t - \frac{9}{4}$$

2.
$$\ln(y+1) = \frac{t^2}{2} + \ln \sec t - \frac{1}{2}$$

3.
$$-\cot y - \csc y = \frac{t^3}{3} + \frac{t^2}{2} - t - \sqrt{2} - \frac{11}{3}$$

4.
$$e^y = -e^{-t} + \frac{7}{2}$$

5.
$$\frac{y^3}{3} + 2y = e^t + t - 16$$